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    زمستان 1392

دورۀ  بيست و سوم      
مجلۀ ریاضی

    دورۀ آموزش متوسطه۲

پـــيوســتگي
امين ادراكي
دانش آموز سال چهارم رياضي
دبيرستان شهيد بهشتي بوشهر

 پيوستگي، پيوسـتگي راست، پيوستگي واژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژهواژه
چپ، پيوستگي در بازه

در پي تغييرات گسـتردة كتاب هاي درسـي حسـابان و حساب ديفرانسـيل و انتگرال، مبحث 
پيوستگي نيز دچار تغييرات گسترده اي شده و به شكلي نو در كتاب هاي درسي جديد بيان شده است. 
در ادامه با اسـتفاده از همين مفاهيم و تعاريف جديد، اندكي درباب پيوستگي صحبت خواهيم كرد.

 a و در يك همسايگي چپ يا راست (يا هر دو) تعريف شده باشد. اگر حد اين تابع در a در نقطة f تعريف: فرض كنيد تابع»
، گوييم تابع f در a پيوسته است» (متن كتاب درسي حسابان).
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موجود و برابر f(a) باشد، يعني 
با توجه به تعريف پيوستگي بايد توجه داشت، هنگامي تابع f در x = a پيوسته است كه: 

f(a) .1 تعريف شده باشد. (يعني a در دامنة تابع f قرار داشته باشد.)
2. تابع f(x) در يك همسايگي چپ يا راست (يا هر دو) a تعريف شده باشد.

 موجود و با f(a) برابر باشد.
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 .3
دقت كنيد كه بنابر تعريف كتاب درسي حسابان، اگر تابعي در يك نقطه تعريف نشده باشد، نمي توانيم در رابطه با پيوستگي 
يا ناپيوستگي آن در نقطة مذكور صحبت كنيم. همچنين، اگر تابع f در x = a تعريف شده باشد، اما در هيچ همسايگي از اين نقطه 

تعريف نشده باشد، نمي توانيم از پيوستگي اين تابع در x = a صحبت كنيم. به مثال زير از كتاب حسابان دقت كنيد: 

 در 1 پيوسته است؟ از پيوستگي اين تابع در 1 نمي توانيم صحبت كنيم. چون اين تابع در 1 تعريف 
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«آيا تابع 
نشده است. شرط صحبت از پيوستگي يا ناپيوستگي يك تابع در يك نقطه آن است كه تابع در آن نقطه و يك همسايگي چپ يا 

راست (يا هر دو) آن نقطه تعريف شده باشد» (متن كتاب درسي حسابان).

مثال: پيوستگي يا ناپيوستگي توابع زير را در x = a تعيين كنيد.

شكل 1

پاسخ:
 از پيوستگي تابع f در نقطة a نمي توان صحبت كرد. زيرا در هيچ همسايگي از a تعريف نمي شود.

 وجود ندارد.
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 تابع g در نقطة a ناپيوسته است، زيرا در اين نقطه تعريف مي شود، اما 
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 از پيوستگي تابع h در نقطة a نمي توان صحبت كرد، زيرا a در دامنة h قرار ندارد.
.
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 توابع J و I در نقطة x = a پيوسته اند، زيرا: 

 پيوستگي راست و چپ
 و مي گوييم f در c از چپ پيوسته است، هرگاه: 
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«تعريف: مي گوييم f در c از راست پيوسته است، هرگاه: 
» (متن كتاب درسي ديفرانسيل).
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مثال: 

 شكل 2
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. اما پيوستگي چپ ندارد. زيرا: 
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 تابع f در نقطة a پيوستگي راست دارد. يعني: 

 نقطة a جزء دامنة g نيست و در نتيجه نمي توان در رابطه با پيوستگي تابع در اين نقطه صحبت كرد.
 تابع h در نقطة a نه پيوستگي راست دارد و نه پيوستگي چپ.

. اما در رابطه با پيوستگي راست آن نمي توان صحبت كرد؛ 
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 تابع I در نقطة a پيوستگي چپ دارد. يعني: 
زيرا در هيچ همسايگي راست a تعريف نمي شود.

 پيوستگي روي بازه
«تعريف: مي گوييم تابع f روي بازة I پيوسته است، هرگاه f در هر نقطة I پيوسته باشد. به ويژه مي گوييم f تابعي پيوسته است، 

هرگاه f در هر نقطة دامنه اش پيوسته باشد» (متن كتاب درسي ديفرانسيل).
دقت كنيد! هنگامي مي گوييم تابعي پيوسته است كه در تمام نقاط دامنه اش پيوسته باشد. همچنين، بديهي است كه اگر تابع 

.
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f روي بازة I پيوسته باشد، مي بايد: 

مثال: پيوستگي توابع زير را در دامنة خود بررسي كنيد.

 (تمرين در كلاس كتاب درسي ديفرانسيل)
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الف) 

. پس f تابعي پيوسته است.
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 و 
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پاسخ: مي دانيم: 
ب)

 شكل 3
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    زمستان 1392

دورۀ  بيست و سوم      
مجلۀ ریاضی

    دورۀ آموزش متوسطه۲

پاسخ:
 نمودارهاي 1 و 2 در تمامي نقاط دامنة خود پيوسته اند. در نتيجه مربوط به توابعي پيوسته هستند و هيچ نقطة ناپيوستگي 
ندارند. اما در رابطه با پيوستگي نمودار 3 در نقطة a نمي توان صحبت كرد. زيرا شرط صحبت در اين باره، آن است كه تابع 
در اين نقطه و يك همسايگي آن تعريف شده باشد. در نتيجه دربارة پيوستگي يا ناپيوستگي اين تابع نمي توان صحبت كرد.

 نمودار 4 در تمام نقاط دامنة خود (حتي b و a) پيوسته است. پس تابعي پيوسته است و هيچ نقطة ناپيوستگي ندارد.
 توجه كنيد براي نقاط ابتدايي يا انتهايي بازه هاي دامنة تابع، پيوستگي به  ترتيب به معناي پيوستگي راست و چپ مي باشد. 
براي مثال، در نمودار 4 كافي است تابع در نقطة b از چپ پيوسته باشد و در اين صورت f در اين نقطه پيوسته است. در واقع:
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قضيه: چندجمله اي ها، توابع گويا و توابع مثلثاتي cot x، sin x ، cos x ، tan x توابعي پيوسته هستند.

 چند نقطة ناپيوستگي دارد؟
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مثال: تابع 

پاسخ: اين تابع در تمامي نقاط دامنة خود پيوسته است و هيچ نقطة ناپيوستگي ندارد.
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قضيه: اگر g و f در a پيوسته باشند، آن گاه:                                                                        

، اشتراك دامنة دو تابع، پيوسته هستند. همچنين تابع cf (كه c عددي ثابت است) در a پيوسته است.
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در a و روي 
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مثال: فرض كنيد: 

. بديهي است كه اين تابع در x =0 پيوسته است.
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پيوسته هستند. پس: 
               تعريف نشده است.

                                    

ممكن بود در حل مثال بالا اين گونه استدلال كنيم: 
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و نتيجه بگيريم كه تابع فوق در x =0 پيوسته نيست! اما بايد توجه كنيد كه دامنة توابع f.g و 
) است. كه با اين فرض اين تابع در نقطة x =0 پيوسته خواهد بود. حالا به اين مثال از كنكور سراسري سال 1391 
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مثال 
توجه كنيد: 

مثال: اگر f+g و f-g هر دو در نقطة x0 پيوسته باشند، آن گاه كدام گزينه صحيح است؟ (سراسري 1391)
الف) الزاماً g و f هر دو در x0 پيوسته اند.

ب) f.g ممكن است در x0 پيوسته نباشد.
ج) f يا g ممكن است در x0 پيوسته نباشند.

د) الزاماً fog(x) در x0 پيوسته است.
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ــت كه دامنة f برابر  . بديهي اس
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پاسـخ: «بياييد فرض كنيم: 
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 مساوي اشتراك اين دو دامنه، يعني 
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نتيجه دامنة 
x =0 به معناي پيوستگي كامل آن است: 
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) كه ما مثال زديم، در x =0 پيوسته هستند. در حالي كه 
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واضح است كه براساس تعريف جديد كتاب از پيوستگي، توابع (
 در x =0 ناپيوسته است و گزينة ج صحيح است».
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    زمستان 1392

دورۀ  بيست و سوم      
مجلۀ ریاضی

    دورۀ آموزش متوسطه۲

ممكن بود در حل اين سؤال اين گونه استدلال مي كرديم: 
                                                                                                                                      در x =x0 پيوسته است.
                                                                                                                                      در x =x0 پيوسته است.
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                                                                                                       در x =x0 پيوسته است.
                                                                                                            در x =x0 پيوسته است.

و به اين ترتيب نتيجه مي گرفتيم g و f در x =x0 پيوسته هستند. اما دقت كنيد كه تساوي هاي فوق فقط در شرايطي برقرار 
. در واقع داريم: 
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هستند كه: 
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                                                                                                                                                      تعريف نشده است.
   

 
                                                                                                                                                      تعريف نشده است.

 در a نمي توانيم 
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، f.g و 
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ــتگي هيچ يك از توابع  ــد، دربارة پيوس ــته باش ــته و g در a ناپيوس نكته: اگر f در a پيوس

تصميم گيري كنيم (وضعيت پيوستگي آن ها در اين نقطه مشخص نيست). به توضيحات زير دقت كنيد: 
 فرض كنيد. بديهي است كه تابع f در نقطة x =2 پيوسته و g در 
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f  را تابع ثابت 0 با دامنة R و g را به شكل 
 و f.g در نقطة x =2 پيوسته هستند.
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اين نقطه ناپيوسته است. مشاهده مي كنيم كه هر دو تابع 
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 اين تابع در a، و در نتيجه 
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در حقيقت ممكن است با محدودشدن دامنة تابع g به: 
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 در مورد 
x= a پيوسته باشند. حل مثال بعد كمك زيادي به درك اين موضوع خواهد كرد.
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ــي  ــده (يعن ــوري تعريف كرد كه توابع ذكر ش ــوان توابع g و f را ط ــادگي مي ت ــد كه به س ــه كني توج
x= a ناپيوسته باشند.
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. بديهي است كه f در 0 پيوسته و g در 0 ناپيوسته است. حال توابع 
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مثال: فرض كنيد: 
 را تشكيل مي دهيم: 
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واضح است كه تمامي توابع بالا در دامنة خود (و در x =0) پيوسته هستند. (همان طور كه مشاهده كرديد، در اين مثال با تغيير 
 شد.)
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، وضعيت پيوستگي آن در نقطة x =0 تغيير كرد و موجب پيوستگي توابع 
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دامنة g از R به 
 در a نمي توانيم تصميم گيري 
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نكته: اگر توابع f ، g در x= a ناپيوسته باشند، دربارة پيوستگي هيچ يك از توابع 
كنيم (وضعيت پيوستگي آن ها در اين نقطه مشخص نيست.)

. بديهي است كه g و f در x =0 ناپيوسته هستند. همچنين: 
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براي مثال فرض كنيد: 
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كه همگي در x =0 پيوسته هستند.
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ــده (يعني  ــادگي مي توان توابع g و f را طوري تعريف كنيد كه توابع ذكر ش توجه كنيد كه به س
ناپيوسته باشند.


